Exam 2 Review: Sections 2.1-2.5 and 3.1-3.4

Section 2.1. Consider a rabbit population satisfying the logistic equation

$$
\frac{d P}{d t}=2 P-(0.005) P^{2}
$$

If the initial population is 120 rabbits, how many months does it take for $P(t)$ to reach 95% of its limiting population M ?

Section 2.2 Draw the phase diagram for the autonomous differential equation

$$
\frac{d x}{d t}=x^{2}-5 x+4
$$

and determine which critical points are stable and unstable.

Section 2.3 Consider a body that moves horizontally through a medium whose resistance is proportional to the square of velocity so that

$$
\frac{d v}{d t}=-2 v^{2}
$$

Assuming that $v(0)=1$ and $x(0)=1$, find the position $x(t)$ as a function of t.

Sections 2.4 Use the Euler method to find an approximation for $y(2)$ using a step size of $h=0.5$ for the differential equation

$$
y y^{\prime}=2 x^{3}, \quad y(1)=3 .
$$

Section 2.5 Use the Improved Euler method to find an approximation for $y(2)$ using a step size of $h=0.5$ for the differential equation

$$
y y^{\prime}=2 x^{3}, \quad y(1)=3 .
$$

Sections 3.1-3.3 Find the general form of they solution to the differential equation

$$
6 y^{(4)}+5 y^{(3)}+25 y^{\prime \prime}+20 y^{\prime}+4=0
$$

which has characteristic function

$$
\left(r^{2}+4\right)\left(6 r^{2}+5 r+1\right)=0
$$

Section 3.4 A 12-lb weight (mass $m=0.375$ slugs $=\mathrm{lbs} / \mathrm{g}$) is attached both to a vertically suspended spring that it stretches 6 in . (thus from lbs- $k \cdot s_{0}=0$, we get $k=24$) and to a dashpot that provides 3 lb of resistance for every foot per second of velocity.
(a) The weight is pulled down 1 ft below its static equilibrium position and then released from rest at time $t=0$, find its position function $x(t)$.
(b) Determine if the motion is over-damped, critically damped or under-damped.

